• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Space: The sun is less magnetically active than similar stars

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,773
Reaction score
15,242
Location
Massachusetts
Why our star seems so different from its stellar kin is a mystery

Science News said:
The sun might be a magnetic slacker.

A census of stars similar to the sun shows that our own star is less magnetically active than others of its kind, astrophysicists report in the May 1 Science. The result could support the idea that the sun is in a “midlife crisis,” transitioning into a quieter phase of life. Or, alternatively, it could mean that the sun has capacity for much more magnetic oomph than it’s shown in the past.

“Our sun could potentially become [as] active” as those other stars in the future, says astrophysicist Timo Reinhold of the Max Planck Institute for Solar System Research in Göttingen, Germany.

A star’s magnetism can drive dramatic outbursts like flares and coronal mass ejections, which can cause chaos on orbiting planets (SN: 3/5/18). When these large ejections from the sun hit Earth, they can knock out satellites, shut down power grids and trigger beautiful auroras. Understanding the sun’s magnetic field is thought to be the key to predicting such outbursts (SN: 6/30/19).

Magnetic fields also can create dark sunspots and bright spots called faculae on a star’s surface. These features change over time as magnetic activity changes, altering a star’s brightness.

Astronomers have been observing the sun’s magnetism through those surface features since Galileo turned a telescope toward the sun in 1610. While the sun’s magnetic activity waxes and wanes in an 11-year cycle, our star has remained fairly calm while humans have been watching. Inferences from certain radioactive elements found in tree rings and ice cores suggest that same overall cycle of magnetic activity has held steady for the last 9,000 years.

...