• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Biology: Some Animals Have No Microbiome. Here’s What That Tells Us.

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,773
Reaction score
15,242
Location
Massachusetts
To stay healthy, humans and some other animals rely on a complex community of bacteria in their guts. But research is starting to show that those partnerships might be more the exception than the rule.

Quanta Magazine said:
In the summer of 2011, the microbiologist Jon Sanders, then a graduate student, found himself in Peru’s tropical rainforest for the second time in as many years, lugging 60 pounds of lab equipment — a bulky fluorescence microscope and the generator to power it — up the Amazon River. Upon arriving at the remote field site, he quickly set about catching as many different ants as he could, eager to peer at the microbes that populated their guts.

In some of those ant species, he saw “this amazing, dense, packed cloud. It was like a galaxy of microbes,” he said. “They’d explode in your eyes when you looked at them” under the microscope. Which is what you might expect to find, given the extent to which we and so many other animals depend on the trillions of bacterial cells that reside within us — for processing food that we can’t otherwise digest, for providing key nutrients, for training our immune system to act effectively against infections. The microbiome is so critical to our health and survival that some researchers even find it useful to think of animals as the sum of their microbial parts.

But when Sanders turned to the rest of the ants — about two-thirds of the different colonies and species he had collected — he was surprised to find that “you would be hard-pressed to find any cells in the gut that you could readily identify as bacteria,” he said. Food, debris, the cells of the insects’ gut lining — all were present. Microbes that might be engaged in the symbiotic relationships we take for granted — not so much.

As the tools to measure and analyze microbial communities have improved, it’s gradually become clear that the microbiome is nowhere near as ubiquitous and important across the animal kingdom as it’s often portrayed to be. Many animals seem to have more flexible or less stable associations with microbes; some don’t seem to rely on them at all. And ironically, it’s these animals that are now allowing scientists to gain new insights into the mystery of how and why the microbiome evolves — its real importance, and the nuanced balancing act of pros and cons that lies at its core.

In the early 20th century, biologists began to uncover fascinating relationships between complex organisms and their microbes: in tubeworms that had no mouth, anus or gut; in termites that fed on tough, woody plants; in cows whose grassy diet significantly lacked protein. Such observations generated excitement and prompted follow-up experiments. In those years, the absence of microbial helpers in an animal wasn’t considered particularly surprising or interesting, and it often received little more than a passing nod in the literature. Even when it was thought to merit more than that — as in a 1978 report in Science that tiny wood-eating crustaceans, unlike termites, had no stable population of gut bacteria — it ended up flying under the radar.

And so expectations quietly began to shift to a new norm, that every animal had a relationship with bacteria without which it would perish. A few voices protested this oversimplification: As early as 1953, Paul Buchner, one of the founders of symbiosis research, wrote with exasperation about the notion that obligate, fixed and functional symbioses were universal. “Again and again there have been authors who insist that endosymbiosis is an elementary principle of all organisms,” he seethed. But counterexamples drowned in the flood of studies on the importance of host-microbe symbioses, especially those that drew connections between human health and our own microbiome.

“The human microbiome has completely driven a lot of our thinking about how microbes work,” said Tobin Hammer, a postdoctoral researcher in ecology and evolutionary biology at the University of Texas, Austin. “And we often project from ourselves outwards.”

But the human example is not a good model for what’s going on in a diverse range of species, from caterpillars and butterflies to sawflies and shrimp, to some birds and bats (and perhaps even some pandas). In these animals, the microbes are sparser, more transient or unpredictable — and they don’t necessarily contribute much, if anything, to their host. “The story is more complex,” said Sarah Hird, an evolutionary biologist and microbial ecologist at the University of Connecticut, “more fuzzy.”

...
 

Roxxsmom

Beastly Fido
Kind Benefactor
Super Member
Registered
Joined
Oct 24, 2011
Messages
23,130
Reaction score
10,901
Location
Where faults collide
Website
doggedlywriting.blogspot.com
That's really interesting. I wonder if this corresponds to the type of diet a species has. I'd assume ants that eat a cellulose-heavy diet would need more microbes living in their guts than ones that eat simple sugars or meats. I suppose a species that has an easy-to-digest diet would possibly adapt in ways that prevent microbes from moving in, as they would be freeloaders rather than mutualists. But domestic dogs and cats have microbiomes and they are carnivores, especially cats. Our microbiomes seems to play a role in keeping "bad" microbes out as well. You'd think this would be an advantage for species that are as crowded as ants and where a single bout of the anty equivalent of a stomach bug or salmonella infection could lay an entire colony low. Maybe some species are incredibly good at clearing microbes of any kind out of their guts.
 

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,773
Reaction score
15,242
Location
Massachusetts
That's really interesting. I wonder if this corresponds to the type of diet a species has.

Surprisingly, it doesn't seem to, at least from what I recall the article to say.

The article did mention that our measurements about what bacteria exist in a species gut may need more careful scrutiny, as there's some evidence that some bacteria may simply have been on the surfaces of food the species ate. Caterpillars, for example, seem not to care a whit when fed antibiotics to kill any bacteria they do have in their guts.