• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Astronomy: Scientists calculate age of massive neutron star crash that helped form our solar system

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,744
Reaction score
15,171
Location
Massachusetts
Scientists calculate age of massive neutron star crash that helped form our solar system

Space.com said:
Astronomers are on the hunt for the remnants of the neutron-star collision that gave Earth its precious metals.

When neutron stars merge, they spew a wealth of short-lived elements into their surroundings, and these materials become part of later-forming solar systems. Now scientists are trying to close in on the merger that seeded our solar system by tracing the elements produced by the original decaying material. From that work, they believe the responsible merger occurred 100 million years before and 1,000 light-years away from the birth of our solar system.

"It was close," the project's lead scientist, Szabolcs Marka, who is a physicist at Columbia University, told Space.com. "If you look up at the sky and you see a neutron-star merger 1,000 light-years away, it would outshine the entire night sky."

Marka and his colleague Imre Bartos, an astrophysicist at the University of Florida, used meteorites from the dawn of the solar system to track down the collision. They analyzed the isotopes — flavors of elements with different numbers of neutrons in their atoms — in these rocks.

First, they calculated the quantity of radioactive isotopes in the early solar system; then the researchers compared their measurements with the amount of isotopes produced by neutron-star mergers. Marka presented the results of their research in January at the winter meeting of the American Astronomical Society in Honolulu.

The universe's heavy elements, such as gold, platinum and plutonium, form when neutrons bombard existing atoms. During such collisions, a neutral neutron can emit a negatively charged electron, becoming a positively charged proton and changing the atom's identity.

This process, known as rapid neutron capture, occurs only during the most powerful explosions, such as supernovas and neutron-star mergers. But scientists continue to debate which of these extreme events is responsible for the bulk of heavy elements in the universe.

So Marka and Bartos turned to ancient meteorites in an effort to understand which type of event may have seeded the early solar system. Locked inside of those rocks from the young solar system is material that spewed from an explosion, and although those initial elements were radioactive and rapidly decayed, they left behind signatures of their past presence.

And as the Laser Interferometer Gravitational-Wave Observatory (LIGO) begins to identify potential neutron-star mergers, scientists are applying its observations to help identify the most likely contributors of material formed in a nearby merger, what Marka called "the witch's brew of the galaxy," the slowly decaying material that made its way to the solar system.

Previous studies estimated that a supernova occurs in the Milky Way once every 50 years or so. LIGO's new observations suggest that neutron-star mergers occur much less frequently, approximately once every 100,000 years. The amount of heavy elements in the solar system suggested that they came from a nearby neutron-star merger, as supernova origins would have yielded more material.

From there, the pair relied on the individual isotopes to determine where and when the solar system's local neutron-star merger had occurred.

"Each isotope is a stopwatch starting at the explosion," Marka said. By studying how much of each isotope was left when the material was captured, he was able to pin down the age of the collision that showered the solar system. "There is only one point in time when they all agree," he said. That point occurred roughly 100 million years before the solar system formed, an eye blink in astronomical time scales. The team also calculated how far away the stars collided, a distance of 1,000 light-years, based on how much material ended up in the solar system.

What the team could not figure out was the direction at which these heavy elements entered the neighborhood that would become our solar system, a discovery that could theoretically allow scientists to pinpoint the remnants of the collision. The problem is that the sun hasn't been sitting still for the 4.5 billion years since it formed; instead, it's been traveling around the galaxy.

Along the way, it has left behind the stars that formed near it in the same cluster, stars that astronomers have long hunted in vain. Marka hopes that one day, astronomers will find those sister stars and the remnants of the neutron-star merger that formed the solar system.

...
 

dickson

Hairy on the inside
Super Member
Registered
Joined
Mar 12, 2017
Messages
3,447
Reaction score
4,142
Location
Directly over the center of the Earth
I subscribe to a notification service for gravitational wave events. (vide. https://www.ligo.caltech.edu/page/activities-try-home) There have been several more binary neutron star merger events reported since GW170817 revealed an astrophysical site for the r-process in one of the most dramatic episodes in the history of astronomy. To date, however, there has been no further example of a binary neutron star merger event with a solid electromagnetic counterpart. Only a matter of time, so long as we keep looking!