• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Physics: New technique for fusion power holds promise

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,643
Reaction score
14,867
Location
Massachusetts
As always, "show me". It's not baseless skepticism -- "commercial-scale" fusion power has perennially been "20 years from now". But this technique at least sounds like it holds promise.

Radical hydrogen-boron reactor leapfrogs current nuclear fusion tech

New Atlas said:
"We are sidestepping all of the scientific challenges that have held fusion energy back for more than half a century," says the director of an Australian company that claims its hydrogen-boron fusion technology is already working a billion times better than expected.

HB11 Energy is a spin-out company that originated at the University of New South Wales, and it announced today a swag of patents through Japan, China and the USA protecting its unique approach to fusion energy generation.

Fusion, of course, is the long-awaited clean, safe theoretical solution to humanity's energy needs. It's how the Sun itself makes the vast amounts of energy that have powered life on our planet up until now. Where nuclear fission – the splitting of atoms to release energy – has proven incredibly powerful but insanely destructive when things go wrong, fusion promises reliable, safe, low cost, green energy generation with no chance of radioactive meltdown.

It's just always been 20 years away from being 20 years away. A number of multi-billion dollar projects are pushing slowly forward, from the Max Planck Institute's insanely complex Wendelstein 7-X stellerator to the 35-nation ITER Tokamak project, and most rely on a deuterium-tritium thermonuclear fusion approach that requires the creation of ludicrously hot temperatures, much hotter than the surface of the Sun, at up to 15 million degrees Celsius (27 million degrees Fahrenheit). This is where HB11's tech takes a sharp left turn.

The results of decades of research by Emeritus Professor Heinrich Hora, HB11's approach to fusion does away with rare, radioactive and difficult fuels like tritium altogether – as well as those incredibly high temperatures. Instead, it uses plentiful hydrogen and boron B-11, employing the precise application of some very special lasers to start the fusion reaction.

Here's how HB11 describes its "deceptively simple" approach: the design is "a largely empty metal sphere, where a modestly sized HB11 fuel pellet is held in the center, with apertures on different sides for the two lasers. One laser establishes the magnetic containment field for the plasma and the second laser triggers the ‘avalanche’ fusion chain reaction. The alpha particles generated by the reaction would create an electrical flow that can be channeled almost directly into an existing power grid with no need for a heat exchanger or steam turbine generator."

HB11's Managing Director Dr. Warren McKenzie clarifies over the phone: "A lot of laser fusion experiments are using the lasers to heat things up to crazy temperatures – we're not. We're using the laser to massively accelerate the hydrogen through the boron sample. You could say we're using the hydrogen as a dart, and hoping to hit a boron , and if we hit one, we can start a fusion reaction. That's the essence of it. If you've got a scientific appreciation of temperature, it's essentially the speed of atoms moving around. Creating fusion using temperature is essentially randomly moving atoms around, and hoping they'll hit one another, our approach is much more precise."

"The hydrogen/boron fusion creates a couple of helium atoms," he continues. "They're naked heliums, they don't have electrons, so they have a positive charge. We just have to collect that charge. Essentially, the lack of electrons is a product of the reaction and it directly creates the current."

...