• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Geology: The last magnetic pole flip saw 22,000 years of weirdness

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,642
Reaction score
14,865
Location
Massachusetts
When the Earth's magnetic poles trade places, they take a while to get sorted.

Ars Technica said:
On their face, this facts are simple: our planet's magnetic poles have traded places with some frequency over Earth's history. At points in the past, compass needles would point south instead of north. But look into the details of these transitions and things will get considerably more complicated. What exactly is it like during the times when the poles flip, for example? And what is it about the "geodynamo" of Earth's liquid iron outer core that causes this behavior?

Records of these transitions exist in several forms. Small bits of the mineral magnetite in sediment will tend to orient themselves with the Earth's magnetic field as they settle into place. Isotopes in ice cores can record changes in the magnetic field's ability to deflect away charged particles from space. And lavas—on land or the seafloor—contain magnetite crystals that are locked into place when the lava solidifies.

A new study led by the University of Wisconsin's Brad Singer uses the latest dating techniques to put together a timeline of the most-recent pole reversal (which occurred a little over 770,000 years ago) based on sequences of lava flows around the world.

The records come from lavas in Chile and the islands of Tahiti, Guadeloupe, La Palma, and Maui. All of them have been studied previously for tracking the history of our magnetic field, as they host multiple lava flows that each provide a snapshot around the time of the reversal. But the method used to date these rocks—based on isotopes of the element argon, which gets trapped in crystals as they solidify—has been improved enough over the last few years that the rocks were worth revisiting to get more accurate dates for each flow. The new measurements come with error bars in the neighborhood of just ±5,000 years for 780,000-year-old lavas.

The new dates help lay out an interesting timeline. Although individual records in some places have seemed to record an incredibly rapid reversal of the poles, these lavas show a complex process playing out over something like 22,000 years.

...