If the "mirrorverse" exists, upcoming experiments involving subatomic particles could reveal it.

Quote Originally Posted by NBC News
At Oak Ridge National Laboratory in eastern Tennessee, physicist Leah Broussard is trying to open a portal to a parallel universe.

She calls it an “oscillation” that would lead her to “mirror matter,” but the idea is fundamentally the same. In a series of experiments she plans to run at Oak Ridge this summer, Broussard will send a beam of subatomic particles down a 50-foot tunnel, past a ring-shaped magnet and into an impenetrable wall. If the setup is just right — and if the universe cooperates — some of those particles will transform into mirror-image versions of themselves, allowing them to tunnel right through the wall. And if that happens, Broussard will have uncovered the first evidence of a mirror world right alongside our own.

“It’s pretty wacky,” Broussard says of her mind-bending exploration.

The mirror world, assuming it exists, would have its own laws of mirror-physics and its own mirror-history. You wouldn’t find a mirror version of yourself there (and no evil Spock with a goatee — sorry "Star Trek" fans). But current theory allows that you might find mirror atoms and mirror rocks, maybe even mirror planets and stars. Collectively, they could form an entire shadow world, just as real as our own but almost completely cut off from us.

Broussard says her initial search for the mirror world won’t be especially difficult. “This is a pretty straightforward experiment that we cobbled together with parts we found lying around, using equipment and resources we already had available at Oak Ridge,” she says. But if she unequivocally detects even a single mirror particle, it would prove that the visible universe is only half of what is out there — and that the known laws of physics are only half of a much broader set of rules.

“If you discover something new like that, the game totally changes,” Broussard says.

As with many grand scientific quests, the hunt for mirror matter grew out of a small, seemingly esoteric mystery. Starting in the 1990s, physicists developed high-precision experiments to study how neutrons — particles found in the nuclei of atoms — break down into protons, a process related to radioactivity. But those experiments took a strange turn.

Researchers found that neutrons created in particle beams, similar to the one Broussard will use, last 14 minutes and 48 seconds, on average, before “decaying” into protons. But neutrons stored in a laboratory bottle seem to break down a bit faster, in 14 minutes and 38 seconds.

Ten seconds might not sound like much, but the actual difference should be zero: All neutrons are exactly the same, and their behavior should depend not one bit on where or how they are examined.

“I take discrepancy very seriously,” says Benjamin Grinstein, a particle-physics expert at the University of California, San Diego. “It’s not just between two experiments. It is a collection of many experiments done independently by several groups. The newest experiments, conceived in part to resolve the disagreement, have “only made it worse,” he adds.

...