• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Space: NASA’s portable atomic clock could revolutionize space travel

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,750
Reaction score
15,179
Location
Massachusetts
A prototype timepiece will spend a year orbiting the Earth as scientists monitor its performance

Science News said:
Traveling the solar system could one day be as easy as taking a bus to work. Scientists envision self-driving spaceships ferrying astronauts through deep space, and GPS-like systems guiding visitors across the terrains of other planets and moons. But for those futuristic navigation schemes, spacecraft and satellites would need to be equipped with clocks that keep time with extreme precision — more precise than any timepiece ever sent to space.

A prototype of that clock is scheduled to launch on June 24 for a test flight.

NASA’s Deep Space Atomic Clock, or DSAC for short, counts off the seconds with ticks that are about 50 times more uniform than those of atomic clocks onboard GPS satellites. That’s on par with the ground-based atomic clocks used for the agency’s Deep Space Network — the cadre of earthbound facilities that use radio antennas to communicate with missions throughout the solar system. But unlike those refrigerator-sized timepieces, the toaster-sized DSAC is small enough to carry aboard a spacecraft.

Outfitted on future spaceships or satellites, this mini atomic clock could “completely change the way we navigate spacecraft through deep space,” Jill Seubert, deputy principal investigator for the project, said June 10 in a news conference.

After the prototype launches from NASA’s Kennedy Space Center at Cape Canaveral, Fla., researchers will monitor its performance in low-Earth orbit for one year. Here’s a preview of what the clock could mean for future spacefaring.

How would the clock change space navigation?

“Every single spacecraft exploring deep space today relies on navigation that’s performed back here at Earth,” said Seubert, who’s based at NASA’s Jet Propulsion Laboratory in Pasadena, Calif. Earth-based antennas send signals to spacecraft, which the spacecraft echo back. By measuring a signal’s round-trip time within a billionth of a second, ground-based atomic clocks in the Deep Space Network help pinpoint the spacecraft’s location.

With the new Deep Space Atomic Clock, “we can transition to what we call one-way tracking,” Seubert said. A spaceship would use such a clock onboard to measure the time it takes for a tracking signal to arrive from Earth, without having to send that signal back for measurement with ground-based atomic clocks. That would allow a spacecraft to judge its own trajectory.

What are the perks of one-way tracking?

Having a spacecraft that’s able to track its location would allow astronauts to steer themselves through the solar system without needing instructions from Earth. “At a place like Mars, the round trip [tracking signal] time can range something like eight to 40 minutes,” says the project’s principal investigator Todd Ely, also based at NASA’s Jet Propulsion Lab. “At Jupiter, it can be … an hour and a half. Saturn, two and a half hours.”

With a craft enabled to track itself, explorers could execute more nimble maneuvers and react more quickly to unexpected situations. “Far term, I’m really excited about … using the clock with other navigation instruments onboard to create something like a self-driving spacecraft,” Ely says.

...