• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Biology: Does the cold virus have an achilles heel?

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,726
Reaction score
15,139
Location
Massachusetts
An indentation on viruses could be a target for new drugs effective against the pathogens

Science News said:
A newly discovered indentation on the surface of viruses that cause many illnesses, including the common cold, could be their Achilles’ heel — and a possible target for effective drugs.

When scientists tested antiviral compounds on cells grown in the lab, the team found one that blocked the replication of an enterovirus. Cryo-electron microscopy revealed that the compound binds to and appears to jam a previously unknown pocket on the virus’s protein shell, researchers report online June 11 in PLOS Biology.

Additional testing suggests that the pocket is widespread among picornaviruses, the viral family that includes enteroviruses — which cause hand, foot and mouth disease as well as more dangerous infections — and rhinoviruses, responsible for the common cold. There are no antiviral medications available to treat these pathogens.

The pocket “is an excellent target for antivirals” that may be effective against many of these types of viruses, says Susan Hafenstein, a structural virologist with the College of Medicine at Penn State who was not involved in the study.

These viruses mutate very frequently, which makes it “easier for them to escape a drug,” she says. To identify drug targets in the viruses, “it is essential to identify key working components” that these pathogens need to survive.

...