• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Biology: What a Newfound Kingdom Means for the Tree of Life

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,773
Reaction score
15,242
Location
Massachusetts
Neither animal, plant, fungus nor familiar protozoan, a strange microbe that sits in its own “supra-kingdom” of life foretells incredible biodiversity yet to be discovered by new sequencing technologies.

Quanta Magazine said:
The tree of life just got another major branch. Researchers recently found a certain rare and mysterious microbe called a hemimastigote in a clump of Nova Scotian soil. Their subsequent analysis of its DNA revealed that it was neither animal, plant, fungus nor any recognized type of protozoan — that it in fact fell far outside any of the known large categories for classifying complex forms of life (eukaryotes). Instead, this flagella-waving oddball stands as the first member of its own “supra-kingdom” group, which probably peeled away from the other big branches of life at least a billion years ago.

“It’s the sort of result you hope to see once in a career,” said Alastair Simpson, a microbiologist at Dalhousie University who led the study.

Impressive as this finding about hemimastigotes is on its own, what matters more is that it’s just the latest (and most profound) of a quietly and steadily growing number of major taxonomic additions. Researchers keep uncovering not just new species or classes but entirely new kingdoms of life — raising questions about how they have stayed hidden for so long and how close we are to finding them all.

Yana Eglit is a Dalhousie graduate student dedicated to discovering novel lineages of the single-cell eukaryotes called protists. While hiking in Nova Scotia on a cold spring day in 2016, she fell back from her friends to scrape a few grams of dirt into a plastic tube. (Such impromptu soil sampling, she said, is “a professional hazard.”) Back in the lab, Eglit soaked her sample in water, and over the next month she periodically peeked at it through a microscope for signs of unusual life.

Late one evening, something odd in the sample caught her eye. An elongated cell radiating whiplike flagella was “awkwardly swimming, as though it didn’t realize it had all these flagella that could help it move,” Eglit said. Under a more powerful scope, she saw it fit the description of a hemimastigote, a rare kind of protist that was notoriously hard to cultivate. The next morning, the lab was abuzz with excitement over the opportunity to describe and sequence the specimen. “We dropped everything,” she recalled.

Hemimastigotes represent one of a handful of Rumsfeldian “known unknown” protist lineages — moderately well-described groups whose positions on the tree of life are not precisely known because they are difficult to culture in a lab and sequence. Protistologists have used peculiarities of hemimastigotes’ structure to infer their close relatives, but their guesses were “‘shotgunned’ all over the phylogeny,” Simpson said. Without molecular data, lineages like hemimastigotes remain orphans of unknown ancestry.

But a new method called single-cell transcriptomics has revolutionized such studies. It enables researchers to sequence large numbers of genes from just one cell. Gordon Lax, another graduate student in the Simpson lab and an expert on this method, explained that for hard-to-study organisms like hemimastigotes, single-cell transcriptomics can produce genetic data of a quality previously reserved for more abundant cells, making deeper genomic comparisons finally possible.

...
 

Woollybear

Super Member
Registered
Joined
Nov 27, 2017
Messages
9,910
Reaction score
10,004
Location
USA
Protists are the catch-all kingdom for stuff that is intermediary between prokaryote and eukaryote. Incredible physiological diversity. It's like totally the super-coolest thing, right up there with lichens.
 
Last edited: