• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Biology: A Math Theory for Why People Hallucinate

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,780
Reaction score
15,260
Location
Massachusetts
Psychedelic drugs can trigger characteristic hallucinations, which have long been thought to hold clues about the brain’s circuitry. After nearly a century of study, a possible explanation is crystallizing.

Quanta Magazine said:
In the 1920s, decades before counterculture guru Timothy Leary made waves self-experimenting with LSD and other psychedelic drugs at Harvard University, a young perceptual psychologist named Heinrich Klüver used himself as a guinea pig in an ongoing study into visual hallucinations. One day in his laboratory at the University of Minnesota, he ingested a peyote button, the dried top of the cactus Lophophora williamsii, and carefully documented how his visual field changed under its influence. He noted recurring patterns that bore a striking resemblance to shapes commonly found in ancient cave drawings and in the paintings of Joan Miró, and he speculated that perhaps they were innate to human vision. He classified the patterns into four distinct types that he dubbed “form constants”: lattices (including checkerboards, honeycombs and triangles), tunnels, spirals and cobwebs.

Some 50 years later, Jack Cowan of the University of Chicago set out to reproduce those hallucinatory form constants mathematically, in the belief that they could provide clues to the brain’s circuitry. In a seminal 1979 paper, Cowan and his graduate student Bard Ermentrout reported that the electrical activity of neurons in the first layer of the visual cortex could be directly translated into the geometric shapes people typically see when under the influence of psychedelics. “The math of the way the cortex is wired, it produces only these kinds of patterns,” Cowan explained recently. In that sense, what we see when we hallucinate reflects the architecture of the brain’s neural network.

But no one could figure out precisely how the intrinsic circuitry of the brain’s visual cortex generates the patterns of activity that underlie the hallucinations.

An emerging hypothesis points to a variation of the mechanism that produces so-called “Turing patterns.” In a 1952 paper, the British mathematician and code-breaker Alan Turing proposed a mathematical mechanism for generating many of the repeating patterns commonly seen in biology — the stripes of tigers or zebra fish, for example, or a leopard’s spots. Scientists have known for some time that the classic Turing mechanism probably can’t occur in a system as noisy and complicated as the brain. But a collaborator of Cowan’s, the physicist Nigel Goldenfeld of the University of Illinois, Urbana-Champaign, has proposed a twist on the original idea that factors in noise. Experimental evidence reported in two recent papers has bolstered the theory that this “stochastic Turing mechanism” is behind the geometric form constants people see when they hallucinate.

Sweaty Grasshoppers

Images we “see” are essentially the patterns of excited neurons in the visual cortex. Light reflecting off the objects in our field of view enters the eye and comes to a focus on the retina, which is lined with photoreceptor cells that convert that light into electrochemical signals. These signals travel to the brain and stimulate neurons in the visual cortex in patterns that, under normal circumstances, mimic the patterns of light reflecting off objects in your field of view. But sometimes patterns can arise spontaneously from the random firing of neurons in the cortex — internal background noise, as opposed to external stimuli — or when a psychoactive drug or other influencing factor disrupts normal brain function and boosts the random firing of neurons. This is believed to be what happens when we hallucinate.

...
 

Cobalt Jade

Kind Benefactor
Super Member
Registered
Joined
Oct 21, 2015
Messages
3,330
Reaction score
1,487
Location
Seattle
Interesting... Oliver Sachs proposed the same idea in his book Migraine, in which the dots, half-circles, and flashes of light sufferers sometimes see are the products of the way the neurons fire in the brain.
 

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,780
Reaction score
15,260
Location
Massachusetts
It makes sense, really. Malfunctioning hardware, which we all have in common.