• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Physics: Puzzling discrepancy

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,773
Reaction score
15,242
Location
Massachusetts
Two methods of measuring the neutron's longevity give different answers, creating uncertainty in cosmological models. But no one has a clue what the problem is.

Quanta Magazine said:
When physicists strip neutrons from atomic nuclei, put them in a bottle, then count how many remain there after some time, they infer that neutrons radioactively decay in 14 minutes and 39 seconds, on average. But when other physicists generate beams of neutrons and tally the emerging protons — the particles that free neutrons decay into — they peg the average neutron lifetime at around 14 minutes and 48 seconds.

The discrepancy between the “bottle” and “beam” measurements has persisted since both methods of gauging the neutron’s longevity began yielding results in the 1990s. At first, all the measurements were so imprecise that nobody worried. Gradually, though, both methods have improved, and still they disagree. Now, researchers at Los Alamos National Laboratory in New Mexico have made the most precise bottle measurement of the neutron lifetime yet, using a new type of bottle that eliminates possible sources of error in earlier designs. The result, which will soon appear in the journal Science, reinforces the discrepancy with beam experiments and increases the chance that it reflects new physics rather than mere experimental error.

But what new physics? In January, two theoretical physicists put forward a thrilling hypothesis about the cause of the discrepancy. Bartosz Fornal and Benjamin Grinstein of the University of California, San Diego, argued that neutrons might sometimes decay into dark matter — the invisible particles that seem to make up six-sevenths of the matter in the universe based on their gravitational influence, while evading decades of experimental searches. If neutrons sometimes transmogrify into dark matter particles instead of protons, then they would disappear from bottles at a faster rate than protons appear in beams, exactly as observed.

Fornal and Grinstein determined that, in the simplest scenario, the hypothetical dark matter particle’s mass must fall between 937.9 and 938.8 mega-electron volts, and that a neutron decaying into such a particle would emit a gamma ray of a specific energy. “This is a very concrete signal that experimentalists can look for,” Fornal said in an interview.

The UCNtau experimental team in Los Alamos — named for ultracold neutrons and tau, the Greek symbol for the neutron lifetime — heard about Fornal and Grinstein’s paper last month, just as they were gearing up for another experimental run. Almost immediately, Zhaowen Tang and Chris Morris, members of the collaboration, realized they could mount a germanium detector onto their bottle apparatus to measure gamma-ray emissions while neutrons decayed inside. “Zhaowen went off and built a stand, and we got together the parts for our detector and put them up next to the tank and started taking data,” Morris said.

Data analysis was similarly quick. On Feb. 7, just one month after Fornal and Grinstein’s hypothesis appeared, the UCNtau team reported the results of their experimental test on the physics preprint site arxiv.org: They claim to have ruled out the presence of the telltale gamma rays with 99 percent certainty. Commenting on the outcome, Fornal noted that the dark matter hypothesis is not entirely excluded: A second scenario exists in which the neutron decays into two dark matter particles, rather than one of them and a gamma ray. Without a clear experimental signature, this scenario will be far harder to test. (Fornal and Grinstein’s paper, and the UCNtau team’s, are now simultaneously under review for publication in Physical Review Letters.)

So there’s no evidence of dark matter. Yet the neutron lifetime discrepancy is stronger than ever. And whether free neutrons live 14 minutes and 39 or 48 seconds, on average, actually matters.

...
 

blacbird

Super Member
Registered
Joined
Mar 21, 2005
Messages
36,987
Reaction score
6,158
Location
The right earlobe of North America

Which is exactly what makes science fascinating. There's always a new unresolved question. That level of uncertainty, which real scientists welcome and embrace, is exactly this thing that discomforts the anti-science crowd so much. Because they demand perfection, absent of any doubts, and know that they have it.

caw