• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Space: NASA just proved it can navigate space using pulsars

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,747
Reaction score
15,174
Location
Massachusetts
NASA just proved it can navigate space using pulsars

Wired said:
HALF A CENTURY ago, astronomers observed their first pulsar: a dead, distant, ludicrously dense star that emitted pulses of radiation with remarkable regularity. So consistent was the object's signal that astronomers jokingly nicknamed it LGM-1, short for "little green men."

It wasn't long before scientists detected more signals like LGM-1. That decreased the odds that these pulses of radiation were the work of intelligent extraterrestrials. But the identification of other pulsars presented another possibility: Perhaps objects like LGM-1 could be used to navigate future missions to deep space. With the right sensors and navigational algorithms, the thinking went, a spacecraft could autonomously determine its position in space by timing the reception of signals from multiple pulsars.

The concept was so beguiling that, when designing the gold plaques aboard the Pioneer spacecraft, Carl Sagan and Frank Drake chose to map the location of our solar system relative to 14 pulsars. "Even then, people knew that pulsars could act like beacons," says Keith Gendreau, an astrophysicist at NASA’s Goddard Space Flight Center. But for decades, pulsar navigation remained a tantalizing theory—a means of deep space navigation relegated to space opera novellas and episodes of Star Trek.

Then, last week, Gendreau and a team of NASA researchers announced that they had finally proven that pulsars can function like a cosmic positioning system. Gendreau and his team performed the demonstration quietly last November, when the Neutron Star Interior Composition Explorer (a pulsar-measuring instrument the size of a washing machine, currently aboard the International Space Station) spent a weekend observing the electromagnetic emissions of five pulsars. With the help of an enhancement known as the Station Explorer for X-ray Timing and Navigation Technology (aka Sextant), Nicer was able to determine the station's position in Earth's orbit to within roughly three miles—while it was traveling in excess of 17,000 miles per hour.

But pulsar navigation's greatest benefits will be felt not in low-Earth orbit (there are better, more precise ways to track spacecraft as local as the ISS), but farther out in space. Today's deep space missions navigate using a global system of radio antennas called the Deep Space Network. "The DSN gives really good range information," says Gendreau, who served as principal investigator on the Nicer mission. "If you know the speed of light and you have highly accurate clocks, it can can ping these spacecraft and infer their distance with very high precision."

But the DSN has some major limitations. The farther away a spacecraft gets, the less reliable the DSN's location measurements become; the network can detect distance just fine, but struggles to determine the spacecraft's lateral position. Far-flung missions also take longer to deliver radio waves to ground-based satellites, and more time to receive instructions from mission planners here on Earth, reducing the speed at which they can react and operate by minutes, hours, or even days. What's more, the network is quickly becoming oversaturated; like an overburdened WiFi network, the more spacecraft that chart a course for deep space, the less bandwidth the DSN will have to split between them.

Pulsar navigation stands to address all of the DSN's shortcomings, particularly its bandwidth issues. A spacecraft equipped to scan the depths of space for pulsar beacons could calculate its absolute position in space without communicating with Earth. That would free up transmission capacity on the DSN, and buy valuable time for executing maneuvers in deep space.

...