• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Astronomy/Cosmology: Earliest Black Hole Gives Rare Glimpse of Ancient Universe

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,747
Reaction score
15,174
Location
Massachusetts
It weighs as much as 780 million suns and helped to cast off the cosmic Dark Ages. But now that astronomers have found the earliest known black hole, they wonder: How could this giant have grown so big, so fast?

Quanta Magazine said:
Astronomers have at least two gnawing questions about the first billion years of the universe, an era steeped in literal fog and figurative mystery. They want to know what burned the fog away: stars, supermassive black holes, or both in tandem? And how did those behemoth black holes grow so big in so little time?

Now the discovery of a supermassive black hole smack in the middle of this period is helping astronomers resolve both questions. “It’s a dream come true that all of these data are coming along,” said Avi Loeb, the chair of the astronomy department at Harvard University.

The black hole, announced today in the journal Nature, is the most distant ever found. It dates back to 690 million years after the Big Bang. Analysis of this object reveals that reionization, the process that defogged the universe like a hair dryer on a steamy bathroom mirror, was about half complete at that time. The researchers also show that the black hole already weighed a hard-to-explain 780 million times the mass of the sun.

A team led by Eduardo Bañados, an astronomer at the Carnegie Institution for Science in Pasadena, found the new black hole by searching through old data for objects with the right color to be ultradistant quasars — the visible signatures of supermassive black holes swallowing gas. The team went through a preliminary list of candidates, observing each in turn with a powerful telescope at Las Campanas Observatory in Chile. On March 9, Bañados observed a faint dot in the southern sky for just 10 minutes. A glance at the raw, unprocessed data confirmed it was a quasar — not a nearer object masquerading as one — and that it was perhaps the oldest ever found. “That night I couldn’t even sleep,” he said.

The new black hole’s mass, calculated after more observations, adds to an existing problem. Black holes grow when cosmic matter falls into them. But this process generates light and heat. At some point, the radiation released by material as it falls into the black hole carries out so much momentum that it blocks new gas from falling in and disrupts the flow. This tug-of-war creates an effective speed limit for black hole growth called the Eddington rate. If this black hole began as a star-size object and grew as fast as theoretically possible, it couldn’t have reached its estimated mass in time.

Other quasars share this kind of precocious heaviness, too. The second-farthest one known, reported on in 2011, tipped the scales at an estimated 2 billion solar masses after 770 million years of cosmic time.

These objects are too young to be so massive. “They’re rare, but they’re very much there, and we need to figure out how they form,” said Priyamvada Natarajan, an astrophysicist at Yale University who was not part of the research team. Theorists have spent years learning how to bulk up a black hole in computer models, she said. Recent work suggests that these black holes could have gone through episodic growth spurts during which they devoured gas well over the Eddington rate.

...