• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Cosmology: Physicists Study How Universes Might Bubble Up and Collide

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,643
Reaction score
14,866
Location
Massachusetts
Since they can’t prod actual universes as they inflate and bump into each other in the hypothetical multiverse, physicists are studying digital and physical analogs of the process.

Quanta Magazine said:
What lies beyond all we can see? The question may seem unanswerable. Nevertheless, some cosmologists have a response: Our universe is a swelling bubble. Outside it, more bubble universes exist, all immersed in an eternally expanding and energized sea — the multiverse.

The idea is polarizing. Some physicists embrace the multiverse to explain why our bubble looks so special (only certain bubbles can host life), while others reject the theory for making no testable predictions (since it predicts all conceivable universes). But some researchers expect that they just haven’t been clever enough to work out the precise consequences of the theory yet.

Now, various teams are developing new ways to infer exactly how the multiverse bubbles and what happens when those bubble universes collide.

“It’s a long shot,” said Jonathan Braden, a cosmologist at the University of Toronto who is involved in the effort, but, he said, it’s a search for evidence “for something you thought you could never test.”

The multiverse hypothesis sprang from efforts to understand our own universe’s birth. In the large-scale structure of the universe, theorists see signs of an explosive growth spurt during the cosmos’s infancy. In the early 1980s, as physicists investigated how space might have started — and stopped — inflating, an unsettling picture emerged. The researchers realized that while space may have stopped inflating here (in our bubble universe) and there (in other bubbles), quantum effects should continue to inflate most of space, an idea known as eternal inflation.

The difference between bubble universes and their surroundings comes down to the energy of space itself. When space is as empty as possible and can’t possibly lose more energy, it exists in what physicists call a “true” vacuum state. Think of a ball lying on the floor — it can’t fall any further. But systems can also have “false” vacuum states. Imagine a ball in a bowl on a table. The ball can roll around a bit while more or less staying put. But a large enough jolt will land it on the floor — in the true vacuum.

In the cosmological context, space can get similarly stuck in a false vacuum state. A speck of false vacuum will occasionally relax into true vacuum (likely through a random quantum event), and this true vacuum will balloon outward as a swelling bubble, feasting on the false vacuum’s excess energy, in a process called false vacuum decay. It’s this process that may have started our cosmos with a bang. “A vacuum bubble could have been the first event in the history of our universe,” said Hiranya Peiris, a cosmologist at University College London.

But physicists struggle mightily to predict how vacuum bubbles behave. A bubble’s future depends on countless minute details that add up. Bubbles also change rapidly — their walls approach the speed of light as they fly outward — and feature quantum mechanical randomness and waviness. Different assumptions about these processes give conflicting predictions, with no way to tell which ones might resemble reality. It’s as though “you’ve taken a lot of things that are just very hard for physicists to deal with and mushed them all together and said, ‘Go ahead and figure out what’s going on,’” Braden said.

Since they can’t prod actual vacuum bubbles in the multiverse, physicists have sought digital and physical analogs of them.

...