• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Astronomy: Glut of antimatter from space apparently not from dead stars

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,646
Reaction score
14,871
Location
Massachusetts
The finding keeps open the possibility that the particles come from dark matter

Science News said:
New observations of the whirling cores of dead stars have deepened the mystery behind a glut of antimatter particles raining down on Earth from space.

The particles are antielectrons, also known as positrons, and could be a sign of dark matter — the exotic and unidentified culprit that makes up the bulk of the universe’s mass. But more mundane explanations are also plausible: Positrons might be spewed from nearby pulsars, the spinning remnants of exploded stars, for example. But researchers with the High-Altitude Water Cherenkov Observatory, or HAWC, now have called the pulsar hypothesis into question in a paper published in the Nov. 17 Science.

Although the new observations don’t directly support the dark matter explanation, “if you have a few alternatives and cast doubt on one of them, then the other becomes more likely," says HAWC scientist Jordan Goodman of the University of Maryland in College Park.

Earth is constantly bathed in cosmic rays, particles from space that include protons, atomic nuclei, electrons and positrons. Several experiments designed to detect the showers of spacefaring particles have found more high-energy positrons than expected (SN: 5/4/13, p. 14), and astrophysicists have debated the excess positrons’ source ever since. Dark matter particles annihilating one another could theoretically produce pairs of electrons and positrons, but so can other sources, such as pulsars.

It was uncertain, though, whether pulsars’ positrons would make it to Earth in numbers significant enough to explain the excess. HAWC researchers tested how positrons travel through space by measuring gamma rays, or high-energy light, from two nearby pulsars — Geminga and Monogem — around 900 light-years away. Those gamma rays are produced when energetic positrons and electrons slam into low-energy light particles, producing higher energy radiation.

The size and intensity of the resulting gamma-ray glow indicated that the positrons slowly dissipated away from their pulsar birthplaces, getting bogged down by magnetic fields that permeate the galaxy and twist up the particles’ trajectories. That sluggish departure suggests the particles wouldn’t have made it all the way to Earth, the researchers conclude, and therefore couldn’t explain the excess.

...

Naturally, not everyone agrees. :Shrug: