• This forum is specifically for the discussion of factual science and technology. When the topic moves to speculation, then it needs to also move to the parent forum, Science Fiction and Fantasy (SF/F).

    If the topic of a discussion becomes political, even remotely so, then it immediately does no longer belong here. Failure to comply with these simple and reasonable guidelines will result in one of the following.
    1. the thread will be moved to the appropriate forum
    2. the thread will be closed to further posts.
    3. the thread will remain, but the posts that deviate from the topic will be relocated or deleted.
    Thank you for understanding.​

Astronomy: New gravitational wave detector almost immediately spots black hole merger

Introversion

Pie aren't squared, pie are round!
Kind Benefactor
Super Member
Registered
Joined
Apr 17, 2013
Messages
10,773
Reaction score
15,242
Location
Massachusetts
We've now got three detectors working in parallel, increasing our resolution.

Ars Technica said:
Today, a huge scientific team announced that humanity has added a third gravitational wave detector to its arsenal. And, only two weeks after Europe's VIRGO detector joined forces with the two LIGO detectors, the three combined to pick up a new black hole merger. While the three have worked together for less than a month so far, there are plans for a substantial observation run next autumn.

Waves in space

Gravitational waves are produced as two massive objects spiral inward toward a collision. Once they get close enough, their rapid circling distorts space itself, sending gravitational waves rippling out. Immediately after their collision, the object formed by their merger vibrates like a bell, briefly producing a different pattern of waves. These ripples in space will alternately expand and contract the distance between two objects by an infinitesimal amount—but one sufficient for our most sensitive instruments to pick up.

The new event, GW170814, is similar to the ones detected earlier. It involves stellar-mass black holes, 31 and 25 times the mass of the Sun. Those are heavier than theoretical work indicates should be possible to form through the collapse of stars. This suggests that either these were formed through earlier mergers or some alternate route of formation exists. The resulting black hole is 53 times our Sun's mass. The missing material—three solar masses' worth of black hole—was converted to energy in the form of gravitational waves. The event occurred about 1.8 billion light years away, though, so don't be surprised that you didn't notice anything.

The software that runs the detectors is set up to do a quick-and-dirty analysis to recognize any potential signals in the data. It then sends out a "trigger" to alert traditional telescopes that there's a region of sky they might want to look at closely. Some of these signals will be false alarms that go away upon detailed analysis, but the chance of understanding these events better makes those a worthwhile risk. In this case, there was no indication of any light (visible or otherwise) produced by the black hole merger.

...